DIHALOGENPHOSPHANKOMPLEXE ALS METALLORGANISCHE SYNTHESEBAUSTEINE *

HEINRICH LANG, LASZLO ZSOLNAI und GOTTFRIED HUTTNER **

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz (B.R.D.)

(Eingegangen den 6. August 1984)

Summary

The dichlorophosphanes (R)P(Cl)₂ react with Fe₂(CO)₉ to give (CO)₄Fe-P(R)(Cl)₂ (I) in high yields. When treated with Fe₂(CO)₉ in 2.5 *M* excess, compounds I give the μ_2 -chloro- μ_2 -chlorophosphido-bridged dinuclear molecules II, Fe₂(CO)₆(μ_2 -Cl)(μ_2 -PRCl). Further treatment of II with Fe₂(CO)₉ results in the formation of the trinuclear clusters IV, Fe₃(CO)₁₀(μ_3 -PR). Zinc reduction of II leads to V, Fe₄(CO)₁₁(μ_4 -PR)₂. All of these reactions lead to fairly high yields for a variety of substituents R. The product selectivity is effectively controlled by the stoichiometry. The syntheses and properties of the main products I, II, IV and V, as well as those of the dinuclear side-products [(CO)₂(Cl)(RPCl₂)Fe(μ_2 -PRCl)]₂ (III), [(CO)₃Fe(μ_2 -PRCl)]₂ (VI), and the trinuclear species (CO)₉Fe₃(μ_3 -PR)₂ (VII), are discussed.

Zusammenfassung

Dichlorphosphane, (R)P(Cl)₂, reagieren mit Fe₂(CO)₉ in guten Ausbeuten zu $(CO)_4$ Fe-P(R)(Cl)₂ (I). Die Verbindungen setzen sich mit einem 2.5-fachen molaren Überschuss an Fe₂(CO)₉ zu den μ_2 -chloro- μ_2 -chlorophosphido-verbrückten Komplexen Fe₂(CO)₆(μ_2 -Cl)(μ_2 -PRCl) (II) um. Weitere Umsetzung von II mit Fe₂(CO)₉ ergibt die dreikernigen Cluster IV, Fe₃(CO)₁₀(μ_3 -PR). Zink-Reduktion von II führt zu V, Fe₄(CO)₁₁(μ_4 -PR)₂. Alle Reaktionen verlaufen für eine breite Palette von Substituenten R mit guten Ausbeuten. Die Produkt-Selektivität wird dabei durch die Stöchiometrie kontrolliert. Darstellung und Eigenschaften der Hauptprodukte I, II, IV und V sowie der Nebenprodukte [(CO)₂(Cl)(RPCl₂)Fe(μ_2 -PRCl)]₂ (III), [(CO)₃Fe(μ_2 -PRCl)]₂ (VI), und der dreikernigen Spezies (CO)₉Fe₃(μ_3 -PR)₂ (VII), werden diskutiert.

^{*} Herrn Prof. Dr. G. Fritz, Karlsruhe, zum 65. Geburtstag gewidmet.

^{**} Korrespondenz-Autor.

Einleitung

Die reduktive Enthalogenierung von komplexgebundenen Dihalogenphosphanen mit Fe₂(CO)₉ hat sich als für die Clusterchemie nützliches Synthesekonzept erwiesen [1,2] dessen Potential zum mehr oder weniger gezielten Aufbau von Clustern in der letzten Zeit eingehend untersucht wurde [3]. Entsprechende Reduktionen freier Dihalogenphosphane wurden wegen ihrer anscheinend geringen Selektivität bisher kaum untersucht [4]. Wir fanden nun, dass sich solche Reaktionen über die Reaktionsbedingungen so steuern lassen, dass einkernige, zweikernige oder dreikernige Verbindungen wahlweise in Ausbeuten von jeweils wenigstens 50% entstehen. Damit bieten diese Reaktionen einen alternativen Zugang zu RP-verbrückten Triangolo-Trieisenclustern, deren Bildung auf der Basis von (R)P(H)₂ als Edukt gut untersucht [3,5,6] und auch mechanistisch verstanden ist [3,7,8,9].

Aus der Reaktion von $Fe_2(CO)_9$ mit (R)P(Cl)₂ lassen sich entsprechend Schema 1 je nach den Reaktionsbedingungen die Verbindungen I, II oder IV als Hauptprodukte erhalten.

SCHEMA 1

Der erste Reaktionsschritt bei diesen Synthesen entspricht immer der Bildung des einkernigen Dichlorphosphan-Komplexes I. In Anwesenheit von überschüssigem $Fe_2(CO)_9$ wird daraus die zweikernige Verbindung II gebildet, die sich ihrerseits mit weiterem $Fe_2(CO)_9$ zum dreikernigen Cluster IV umsetzt.

Synthese von I

Dieisenenneacarbonyl ist eine leicht zugängliche Quelle für $(CO)_4$ Fe-Fragmente [10]. Setzt man daher Fe₂(CO)₉ und (R)P(Cl)₂ im Molverhältnis 1/1 in Toluol um, so entsteht annähernd ein 1/1-Gemisch von im wesentlichen zwei Produkten, von denen das eine zweifelsfrei als Fe(CO)₅ identifiziert werden kann. Das zweite Produkt ist jeweils der einkernige Komplex vom Typ I.

 $Fe_{2}(CO)_{9} + (R)P(Cl)_{2} \rightarrow (CO)_{4}Fe - P(R)(Cl)_{2} + Fe(CO)_{5}$ (I)

R	<u>R</u>
Ia:CH ₃	If: c-C ₆ H ₁₁
Ib:C ₂ H ₅	Ig:C ₆ H ₅
Ic:i-C ₃ H ₇	Ih:4-CH ₃ OC ₆ H ₄
ld:n-C ₄ H9	Ii: 4-BrC ₆ H ₄
le:t-C ₄ H ₉	

Die auf dieser Stufe unerwünschten Folgereaktionen von I mit $Fe_2(CO)_9$ lassen sich bei einem Molverhältnis von $Fe_2(CO)_9/(R)P(Cl)_2 = 1/2$ bis 1/1 nahezu vollständig unterdrücken, so dass die Ausbeuten an I auf bis zu 90% der theoretischen Ausbeute optimiert werden können. Die Verbindungen I sind auf diesem Wege für eine breite Palette organischer Substituenten R zugänglich.

TABELLE 1

SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN I

Verbindung		IR ^a	³¹ P-NMR [*]	¹ H-NMR ^c
$(CO)_4 Fe - P(R) - (Cl)_2$		$(\nu(CO)$ -Streckschwing- ungen; (cm ⁻¹))	δ(ppm)	δ(ppm)
$R = CH_3$	Ia	2079vw, 2072s, 2008s, 1977vs, 1965vs, 1938vw	216.6	2.83 (D, 3H, J(PH) 4.8) ^d
$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	Ib	2078vw, 2071s, 2007s, 1978vs, 1964vs, 1933w	232.0	1.48 (DT, 3H, J(PH) 24.9 J(HH) 7.4) 2.85 (Q, 2H, J(HH) 7.4) ^d
$\mathbf{R} = \mathbf{i} \cdot \mathbf{C}_3 \mathbf{H}_7$	Ic	2078vw, 2070s, 2005s, 1978vs, 1962vs, 1929vw	244.4	2.8 (M, 1H) 1.49 (DD, 6H, J(HH) 6.9, J(PH) 23.7) ^d
$\mathbf{R} = \mathbf{n} \cdot \mathbf{C_4} \mathbf{H_9}$	Id	2078vw, 2071s, 2006s, 1978vs, 1963vs, 1930vw	229.0	1.0 (T, 3H, J(HH) 6.7) 1.8 (M, 4H) 2.84 (T, 2H, J(HH) 7.6) ^d
$\mathbf{R} = \mathbf{t} - \mathbf{C_4} \mathbf{H_9}$	Ie	2077m, 2068s, 2002s, 1975vs, 1962vs, 1929vw	251.6	1.46 (D, 9H, J(PH) 21.6) ^d
$\mathbf{R} = \mathbf{c} \cdot \mathbf{C}_6 \mathbf{H}_{11}$	If	2077vw, 2069s, 2004s, 1978vs, 1961vs, 1930vw	240.7	1.1–2.8 (M, 11H) ^d
$\mathbf{R} = \mathbf{C}_6 \mathbf{H}_5$	Ig	2078w, 2070s, 2005s, 1978vs, 1967vs, 1932vw	211.7	7.7–8.4 (M, 5H) ^c
$\mathbf{R} = 4\text{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	Ih	2078w, 2070s, 2005s, 1977vs, 1966vs, 1927vw	206.7	4.0 (S, 3H) 7.29 (DD, 2H, J(HH) 9.1, J(PH) 3.2) 8.2 (DD, 2H, J(HH) 9.1, J(PH) 14.6) ^c
$\mathbf{R} = 4\text{-}\mathbf{BrC}_{6}\mathbf{H}_{4}$	Ii	2080w, 2072s, 2009s, 1980vs, 1969vs, 1945vw	203.5	7.5–8.4 (M, 4H) ^e

^a n-Pentan; vs = sehr stark, s = stark, m = mittel, w = schwach, vw = sehr schwach. ^b δ , 298 K, rel. 85% H₃PO₄ mit δ (P(OMe)₃) 139 ppm; in Toluol. ^c δ , TMS (ext.); S = Singulett, D = Duplett, T = Triplett, Q = Quartett, M = Multiplett, DD = Duplett von Duplett, DT = Dublett von Triplett J in Hz. ^d CDCl₃. ^c Aceton-d₆.

Von den gelben Verbindungen I sind nur Ig und Ih bei 20°C kristalline Festkörper. Die anderen Komplexe fallen als Öle an, die teilweise erst bei -30°C zu kristallinen gelben Festkörpern erstarren. Die Abtrennung des als Kopplungsprodukt gebildeten Fe(CO)₅ kann durch Tieftemperaturkristallisation erfolgen, gelingt jedoch einfacher durch Filtration über Silikagel. Die thermische Stabilität von I hängt deutlich von der Art der Reste R ab. Die sterisch wenig anspruchsvollen Reste von Ia, Ib und Id führen zu einer erhöhten thermischen Labilität: Auch bei -30°C tritt hier innerhalb von Wochen teilweise Zersetzung zu nicht näher identifizierten, in Toluol unlöslichen Produkten ein. Die anderen Verbindungen I sind bei -30°C wenigstens über zwei Monate stabil.

In den ³¹P-NMR-Spektren zeigen sich Signale im Bereich von 203–252 ppm (Tab. 1), wie sie für komplexgebundene Dihalogenphosphane typisch sind [11]. Die ¹H-NMR-Spektren weisen jeweils die Identität der Substituenten R nach, wobei die chemischen Verschiebungen und Kopplungsmuster denen entsprechen, welche für andere (R)P(Cl)₂-Komplexe schon früher beobachtet wurden [11]. Die IR-Spektren zeigen jeweils mehr Banden als für ein Fe(CO)₄-Fragment zunächst erwartet werden könnte (Tab. 1). Die erhöhte Bandenzahl kann vermutlich nicht auf das Vorliegen eines Gemisches axial und äquatorial substituierter Komplexe (CO)₄ FeL zurückgeführt werden: Theoretische Überlegungen ebenso wie praktische Beispiele belegen, dass Liganden, deren Donor/Akzeptor-Verhältnis grösser ist als dasjenige von CO, in den Komplexen (CO)₄FeL stets axial gebunden werden [12,13]. Dass mehr als vier ν (CO)-Banden gefunden werden, ist dann auf eine Symmetrieerniedrigung bei der Kopplung des $(CO)_4$ Fe-Restes und des $(R)P(Cl)_2$ -Restes mit C_s-Symmetrie zurückzuführen. Der (R)P(Cl)₂-Ligand besitzt zwei geringfügig unterschiedliche π -Akzeptororbitale [14]. Die Wechselwirkung dieser Orbitale mit den Donororbitalen eines $Fe(CO)_{4}$ -Fragments von C_s-Symmetrie sollte dann zu zwei verschiedenen rotameren Formen führen, welche offenbar beide stabil genug sind, um IR-spektroskopisch erkannt zu werden.

Alle Verbindungen I geben unter EI-Bedingungen gut auswertbare Massenspektren (Tab. 2).

Vom Molekülion leiten sich zwei Fragmentserien ab: Entweder werden zuerst schrittweise vier Carbonylgruppen und dann ein Chloratom unter Bildung von FePCIR⁺ abgespalten. Im anderen Fall leitet sich dasselbe Fragmention aus dem Molekülion durch primäre Abspaltung von einem Chloratom und nachfolgender Abspaltung von vier Carbonylgruppen ab. Weitere Fragmentierung führt zu den charakteristischen Fragmentionen FePR⁺ und PCIR⁺ sowie RP⁺.

Darstellung von II und III

Die selektive Bildung von I gelingt wie oben beschrieben nur bei Vermeidung eines Überschusses an $Fe_2(CO)_9$. Setzt man daher I mit $Fe_2(CO)_9$ im Molverhältnis 1/2.5 bei 50°C in Toluol um, so reagiert es im wesentlichen zu II weiter.

Die Bildung von II wird am ehesten verständlich, wenn man als einleitenden Schritt die Insertion eines carbenanalogen $(CO)_4$ Fe-Teilchens [12] in eine P-Cl-Bindung von I annimmt; die dann sterisch nahezu notwendige Ausbildung einer Metall-Metall-Bindung und die ebenso aus sterischen Gründen naheliegende Einbezichung des eisenständigen Chlors in eine Brückenbindung führt unter Abspaltung von zwei Carbonylgruppen zu II.

Die Struktur von II ist für IId röntgenographisch belegt [4]. Von nicht umgesetztem I und dem als Nebenprodukt oft vorhandenen IV wird II chromatographisch abgetrennt. Die roten Verbindungen II zeigen für IId-IIf Festpunkte oberhalb 20°C, während IIa-IIc bei 20°C als Öle anfallen. Die im Festkörper für IId gefundene symmetrische Struktur [4] liegt für alle Komplexe II auch in Lösung vor: Man beobachtet im ν (CO)-Bereich stets nur vier Banden.

Die Bandenarmut der IR-Spektren legt ebenso wie das Auftreten von nur einem ³¹P-NMR-Resonanzsignal zunächst den Schluss nahe, dass von den beiden möglichen Isomeren A und B nur eines gebildet wird. Nach der Festkörperstruktur von IId

sollte dies das Isomer A sein. Dieser Deutung entsprechen auch die ¹H-NMR-Spektren von IIb-IId und IIf (Tab. 3). Für IIa und IIe findet man zwar weder im IR- noch im ³¹P-NMR-Spektrum einen Hinweis auf das Vorliegen eines Isomerengemisches, jedoch zeigt das ¹H-NMR-Spektrum des Ethylrestes eine komplizierte Multiplettstruktur (Tab. 3), welche vielleicht als Indiz für das Vorliegen von IIa in einer Mischung der Isomeren A und B gewertet werden kann.

Bei IIe treten im ¹H-NMR-Spektrum zwei getrennte Singuletts im Intensitätsverhältnis 2/1 für den Methoxysubstituenten auf. Das gleiche Intensitätsverhältnis beobachtet man für einander entsprechende Signalgruppen im Aromatenbereich (Tab. 3). Das Spektrum lässt somit für IIe auf ein 2/1-Isomerengemisch der Formen A und B schliessen. Damit ergibt sich, dass weder aus der Anzahl der Signale des ³¹P-NMR-Spektrums noch des IR-Spektrums die Lage des Isomerengleichgewichtes sicher abgeleitet werden kann. Die Massenspektren von II (Tab. 4) zeigen neben dem Molekülion Fragmentserien, welche der sukzessiven Abspaltung von sechs Carbonylgruppen entsprechen; daran schliesst sich die Abspaltung der zwei Chlorsubstituenten und eines Eisens unter Bildung des charakteristischen Fragments FePR⁺ an, das weiter zu FeP⁺ oder PR⁺ zerfällt.

Der Erfolg der hier beschriebenen selektiven Bildung von I und II hängt von der Einhaltung der richtigen Stöchiometrie ab: Ist zu irgendeinem Zeitpunkt II neben freiem Liganden $(R)P(Cl)_2$ vorhanden, so wird III als charakteristisches Nebenprodukt erhalten. Gezielt kann III durch Umsetzung von II mit $(R)P(Cl)_2$ erhalten werden.

(Fortsetzung s. S. 32)

Ion	$\mathbf{R} = \mathbf{CH}_3$ (I	a)	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	(Jb)	$R = i - C_3 H_7$	(Ic)	$R = n-C_4 H$	e (Id)
	m/e	Ir	m/e	I_r	m/e	Ir	m/e	
M ⁺	284	7	298	18	312	2	326	2
M ⁺ -CO	256	15	270	18	284	e	298	ς,
$M^+ - 2CO$	228	80	242	6	256	2	270	2
M ⁺ – 3CO	200	20	214	23	228	4	242	4
$M^{+} - 4C0$	172	100	186	88	200	18	214	19
M ⁺ -Cl	249	12	263	14	277	9	291	
M^+ -Cl-CO	221	15	235	×	249	7	263	1
M^{+} -Cl-2CO	193	8	207	9	221	7	235	2
$M^{+} - Cl - 3CO$	165	11	179	4	193	1	207	1
$M^{+} - CI - 4CO$	137	38	151	6	165	Ś	179	10
FePC1 ⁺	122	6	122	7	122	Ś	122	÷
FePR ⁺	102	17	116	8				
PRC1 ⁺	81	39						
PR⁺	6 6	60	60	100	74	100	88	100
Fe +	56	78	56	23	56	20	56	18

MASSENSPEKTREN DER VERBINDUNGEN (CO)₄Fe-P(R)(Cl)₂ (I)

TABELLE 2

Ion	$R = t - C_4$	H ₉ (Ie)	$R = c - C_{\delta}$	H ₁₁ (If)	$R = C_{s}H$	₅ (Ig)	R = 4-CH	₃ OC ₆ H ₄ (Ih)	R = 4-Br	C ₆ H ₄ (Ii) "
	m/e	Ir.	m/e	Ir	m/e	Ir	m/e	<i>I</i> _r	m/e	Ir
-W ⁺	326	19	352	e	346	m	376	3	426	1
M ⁺ -CO	298	16	324	S	318	ę	348	2	398	1
$M^+ - 2CO$	270	8	296	£	290	7	320	æ	370	ę
$M^{+} - 3CO$	242	22	268	6	262	6	292	s	342	ŝ
$M^{+} - 4C0$	214	4	240	23	234	26	264	15	314	11
$M^+ - CI$	291	12	317	7	311	1	341	1	391	1
$M^+ - CI - CO$	263	ę	289	1	283	1	313	1	263	7
$M^{+} - CI - 2CO$	235	9	261	2	255	ę	285	2	335	
$M^{+} - CI - 3CO$	207	6	233	1	227	7	257	1	307	1
M^{+} -CI-4CO	179	œ	205	13	199	5	229	5	279	1
FePC1 ⁺	122	4	122	7	122	1	122	ŝ		
FePR ⁺					164	4	194	1	243	4
PRC1 ⁺					143	4	173	13	222	4
PR ⁺	88	100	114	100	108	100	138	100	186	15
Fe+	56	7	56	10	56	10	56	7	56	24
" PC ₆ H ₄ ⁺ 107(73), C	⁶ H ₄ Br ⁺ 155(2	57), FePCl ₂ Br	⁺ 238(100), <i>M</i> ⁻	+ -4C0-Br	234(57).					

Verbindung		IR a	³¹ P-NMR ^b	¹ H-NMR ⁶
I		(r(CO)-Streckschwingungen; (cm ⁻¹))	ð(ppm)	ð(ppm)
$Fe_2(CO)_6 P(Cl)_2(R)$ (II)				
$R = C_2 H_5$	(IIa)	2085w, 2046vs, 2019m, 2002s	290.0	1.2–1.8(M, 3H) 2.3–3.0 (M. 2H) ^d
$R = i-C_3H_7$	(qII)	2082w, 2044vs, 2017m, 2001s	294.2	1.54(DD, 6H, J(HH) 7.4, J(PH) 19.5) 2.2–3.0 (M. 1H) ^d
$\mathbf{R}=\mathbf{t}\cdot\mathbf{C}_{4}\mathbf{H}_{9}$	(IIc)	2083w, 2045vs, 2017m, 2000s	284.0	1.38 (D, 9H, J(PH) 17.8) ^d
$R = C_6 H_5$	(pII)	2085w, 2048vs, 2020m, 2003s	222.6	7.5–8.2 (M, 5H) ^e
R = 4-CH ₃ OC ₆ H ₄	(IIe)	2083w, 2046vs, 2018m, 2002s	221.5	3.91, 3.94 (S, 3H) 7.1, 7.2 (DD, J(HH) 9.0, J(PH) 2.4) 7.83, 7.93 (DD, J(HH) 9.0, J(PH) 12.0) ^e
$R = 4-BrC_6H_4$	(JII)	2086w, 2049vs, 2022m, 2005s	219.3	7.5–7.9 (M, 4H) ^e
$Fe_2(CO)_4(Cl)_2(\mu_2 - PRCl)$) ₂ (RPCl ₂) ₂ (II.	<i>I</i>)		
R = CH ₃	(IIIa)	2059vs, 2013s ⁷	130.3 (D, J(PP) 127.9) 197.4 (D, J(PP) 127.9) ^J	2.70, 2.72, 2.80 (S, 12H) ^d
$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	(IIIb)	2050vs, 2008s ⁷	147.5 (D, J(PP) 127.9) 209.3 (D, J(PP) 127.9) ^f	1.35 (M, 12H) 3.2 (M, 8H) ^d
	-			

SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN II UND III

TABELLE 3

^a n-Pentan, vs = sehr stark, s = stark, m = mittel, w = schwach.^b δ , 298 K, rel. 85% H₃PO₄ mit δ (P(OMe)₃) 139 ppm; Toluol.^c δ , TMS (ext.); S = Singulett, D = Duplett, DD = Duplett von Duplett w = Multiplett. J in Hz^d CDCl₃.^e Aceton- d_6 .^f CH₂Cl₂.

TABELLE 4

MASSENSPEKTREN DER VERBINDUNGEN (CO) $_{6}$ Fe₂P(R)(CI)₂ (II)

lon	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}$	l ₅ (IIa)	$R = i-C_3$	H ₇ (IIb)	$R = t-C_4$	H ₉ (IIc)	$R = C_6 H$	s (IId)	R = 4-CH	$1_3 OC_6 H_4$ (IIe) ^d	R = 4-Br(6H4 (IIf)
	m/e	I _r	m/e	I _r	m/e	I _r	m/e	Ir	m/e	I_r	a/m	Ir
M ⁺	410	1	424	5	438	1	458	4	488	-1	538	1
M ⁺ -CO	382	21	396	4	410	ŝ	430	12	460	œ	510	4
$M^{+} - 2CO$	354	5	368	5	382	9	402	16	432	11	482	6
$M^{+} - 3C0$	326	18	340	4	354	4	374	11	404	13	454	9
$M^{+} - 4CO$	298	48	312	11	326	12	346	17	376	13	426	6
$M^+ - 5CO$	270	8	284	23	298	28	318	77	348	24	398	6
$M^+ - 6CO$	242	100	256	27	270	30	290	73	320	100	370	
$M^+ - 6CO - CI$	207	10	221	S	235	7	255	5	285	1	335	1
$M^{+} - 6CO - 2CI$	172	9	186	ę	200	1	220	80	250	4	300	
FePR ⁺	116	55	130	6L	14	57	164	100	194	68	243	100
FeP ⁺	87	61	87	48	87	39	87	e	87	S	87	2
Fe+	56	82	56	100	56	11	56	39	56	78	56	13
PR ⁺	60	37	74	6	88	100	108	65	138	11	107	43
R⁺			43	33	57	100	2				155	33
^a FePC ₆ H ₄ O ⁺ 179(374(2), M^+ – Br – 4	44), FePC ₆ KC0 346(1)	H_4^+ 163(29 , M^+ – Br –), PC ₆ H ₄ O -5C0 318(1	⁺ 123(18), F), M ⁺ – Br	C ₆ H ₄ ⁺ 107 - 6CO 290(7(21), ^b M ⁺ 1), FePC ₆ F	-Br 458(1) 1 ₄ ⁺ 163(9).	$M^+ - Br$	- CO 430(1),	M^+ – Br – 2CC) 402(1), <i>M</i>	+ -Br-3CO

Die Bildung von III aus II kann über die nucleophile Öffnung der μ_2 -Chlorbrücke durch die Lewis-Base (R)P(Cl)₂ als einleitenden Schritt einfach gedeutet werden. Unter dieser Hypothese entsteht in der ersten Stufe die Verbindung Fe(CO)₃(Cl)(μ_2 -RPCl)Fe(CO)₃(RPCl₂). Dieser Vorläuferkomplex stabilisiert sich unter Symmetrisierung zu III, wobei ein phosphorständiges Chloratom des (R)P(Cl)₂-Liganden auf ein Eisen übergeht und die (R)P(Cl)-Gruppe eine μ_2 -Brücken-Beziehung aufbaut. Durch die formale Oxidation der Eisenzentren sollte nun die Metall-Carbonyl-Bindung soweit geschwächt sein, dass eine Substitution jeweils einer Carbonylgruppe an jedem der beiden Eisenzentren durch einen (R)P(Cl)₂-Liganden thermisch leicht möglich wird. Diese angenommene Reaktionssequenz würde am ehesten verstehen lassen, dass die Ausbeuten an III ohne weitere Optimierung sehr gut sind, wenn man II mit einem vierfachen molaren Überschuss von (R)P(Cl)₂ zur Reaktion bringt.

Die Elektronenbilanz verlangt, dass in III keine Eisen-Eisen-Bindung vorliegt. Der Bau von III wurde am Beispiel von IIIa durch Röntgenstrukturanalyse bestimmt [15].

Fig. 1. Die Molekülstruktur von IIIa.

Er kann durch das Modell zweier kantenverknüpfter Oktaeder beschrieben werden. Die Verbindung ist inversionssymmetrisch gebaut. Der Fe-Fe-Abstand innerhalb der planaren Fe-P-Fe-P-Ringeinheit beträgt 355.6 pm und zeigt, dass die Eisenatome keine direkten Bindungsbeziehungen miteinander haben. Die Fe-Cl-Abstände betragen 229.3 pm, der Fe-P-Abstand zur μ_2 -Phosphidobrücke beträgt 227.0 pm und stimmt gut mit entsprechenden Werten für andere μ_2 -phosphidoverbrückte Eisenverbindungen überein [4,16]. Der Fe-P-Abstand zum axialständigen terminalen Dichlormethylphosphan beträgt 223.2 pm.

Die Verbindungen III werden als Nebenprodukte auch bei der Umsetzung von $Fe_2(CO)_9$ mit (R)P(Cl)₂ erhalten. Ihr Bildungsweg ist durch den stufenweisen Aufbau von III über die Schrittfolge I \rightarrow II \rightarrow III erklärt.

Die für IIIa im Festkörper gefundene Struktur liegt für die Verbindungen III auch in Lösung vor. In Übereinstimmung mit der inversionssymmetrischen Festkörperstruktur, die zwei chemisch verschiedene jeweils inversionssymmetrisch verwandte Paare von $(CO)_2$ Fe-Gruppierungen aufweist, findet man im $\nu(CO)$ -Bereich für die Verbindungen III nur zwei starke $\nu(CO)$ -Valenzschwingungen. Im ³¹P-NMR-Spektrum treten für die zwei chemisch verschiedenen Arten von Phosphor zwei Dubletts mit J(PP) 128 Hz (Tab. 3) auf. Die ¹H-NMR-Spektren zeigen für IIIb, wie für zwei geringfügig verschiedene phosphorständige Ethylgruppen erwartet, eine bei 80 MHz nicht aufgelöste Multiplettstruktur. Auch das Signalmuster der Methylgruppen bei IIIa wird bei 80 MHz nicht vollständig aufgelöst: Man beobachtet drei Signale, die nur wenige Hz auseinanderliegen (Tab. 3). Da ²J(PH)-Kopplungen erfahrungsgemäss klein sind [11], stimmt auch dieses Signalmuster mit dem Vorliegen von ausschliesslich inversionssymmetrischem IIIa überein.

Darstellung von IV

IV entsteht aus II bei dessen reduktiver Enthalogenierung mit Fe₂(CO)₉.

Verbindung		IR ^a	³¹ P-NMR ^b	¹ H-NMR ^c
$Fe_{3}(CO)_{10}(\mu_{3}-PR)$		$(\nu(CO)$ -Streckschwingungen; (cm ⁻¹))	ð(ppm)	ð(ppm)
$\mathbf{R} = \mathbf{CH}_3$ ((IVa)	2085w, 2041s, 2032vs, 2021m, 2012m, 1998m 1985vw, 1970w, 1858vw	458.2	3.59 (D, 3H, J(PH) 13.6) ^d 3.91 (D, 3H, J(PH) 13.9) ^e
$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5 \tag{6}$	(IVb)	2084w, 2040s, 2031vs, 2012m, 1997m, 1985vw, 1969vw, 1859vw	487.9	1.93(DT, 3H, J(HH) 7.5, J(PH) 22.7) 3.9 (DQ, 2H, J(HH) 7.5, J(PH) 2.0) d
$\mathbf{R} = \mathbf{i} \cdot \mathbf{C}_3 \mathbf{H}_7 \tag{(1)}$	(IVc)	2084w, 2041s, 2029vs, 2012m, 1997m, 1982vw, 1967vw - 1862vw	508.5	2.0 (DD, 6H, J(HH) 7.1, J(PH) 21.3) 4.3 (M, 1H) ^d
$\mathbf{R} = \mathbf{n} \cdot \mathbf{C}_4 \mathbf{H}_9 \tag{(1)}$	(IVd)	2084w, 2040s, 2030vs, 2012m, 1997m, 1983vw, 1969vw, 1858vw	479.2	1.13 (T, 3H, J(HH) 6.9) 2.0 (M, 4H); 3.9 (M, 2H) ^d
$\mathbf{R} = t \cdot \mathbf{C}_4 \mathbf{H}_9 \tag{6}$	(IVe)	2084w, 2042s, 2025vs, 2016m, 1998w, 1977w, 1965w, 1875vw	520.8	2.0 (D, 9H, J(PH) 19.1) ^d
$\mathbf{R} = c \cdot \mathbf{C}_6 \mathbf{H}_{11} \tag{6}$	(IVI)	2083w, 2039s, 2028vs, 2012m, 1996m, 1980vw, 1966vv, 1858vw	504.1	1.4-2.7 (M, 10H) 3.7-4.3 (M, 1H) ^d
$\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5} \tag{1}$	(IVg)	2084w, 2042s, 2030vs, 2015m, 1992vw, 1983vw, 1969vw, 1859vw	451.6	7.6–8.6 (M, 5H) ^e
$\mathbf{R} = 4 \cdot \mathrm{CH}_3 \mathrm{OC}_6 \mathrm{H}_4 \qquad ($	(IVh)	2083w, 2041s, 2029vw, 2014m, 1998w, 1982vw, 1968vw, 1856vw	453.0	4.07 (S, 3H) 7.42 (DD, 2H, J(HH) 9.2, J(PH) 2.2) 8.47 (DD. 2H. J(HH) 9.2. J(PH) 13.6) °
$\mathbf{R} = 4 \cdot \mathrm{BrC}_{6} \mathrm{H}_{4} \qquad ($	(IVI)	2085w, 2047vs, 2030s, 2013m, 1989w, 1970vw, 1834vw	466.6	7.7–8.6 (M, 4H) ^e
$R = 2,4,6-(CH_3)_3C_6H_2$ (([V])	2081w, 2039s, 2028vs, 2011m, 1996w, 1982w, 1967w, 1853vw	418.4	2.46 (S, 3H) 2.80 (S, 6H) 7.37 (D, 2H, <i>J</i> (PH) 4.2) *
^a n-Pentan; vs = sehr star S = Singulett, D = Duplet ^c Aceton-d ₆ .	k, s = stark, m = tt, T = Triplett,	= mittel, w = schwach, vw = sehr schwach. ^b δ, 29 M = Multiplett, DD = Duplett von Duplett, D ²	8 K, rel. 85% H ₃ PO ₄ m T = Duplett von Triplet	t $\delta(P(OMe)_3)$ 139 ppm; in Toluol. ^c δ , TMS (ext.); t, DQ = Duplett von Quartett. <i>J</i> in Hz. ^d CDCl ₃ .

TABELLE 5. SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN IV

Direkt entsteht IV aus I, wenn I mit einem 7-molaren Überschuss an $Fe_2(CO)_9$ umgesetzt wird. Sicher verläuft auch hier die Bildung von IV über II als Zwischenstufe, da ja ein Molverhältnis von $I/Fe_2(CO)_9 = 1/2.5$ (s.o.) zur Isolierung von II als Hauptprodukt führt. Für die Synthese von IV ist der zweite Reaktionsweg bequemer.

Die Verbindungen IV sind kristalline metallisch glänzende Festkörper, die auch in n-Pentan sehr gut löslich sind. Ihre Lösungen haben braune bis braunolive Farbe. Sie sind selbst in Lösung über kurze Zeit auch an Luft beständig. Unter Schutzgas sind die Festkörper unbegrenzt stabil. Ihre thermische Stabilität hängt von der Art ihrer Reste R ab (Tab. 5): Während sich IVb und IVi bei Temperaturen um 200°C zersetzen, schmelzen die Verbindungen IVd und IVf-h kongruent. Für IVa, IVc und IVe beobachtet man bei etwa 200°C teilweise Zersetzung, wobei die Verbindungen gleichzeitig unzersetzt bei Normaldruck sublimieren.

Die Struktur von IV wurde im Zusammenhang mit anderen Arbeiten an zwei Vertretern ($R = t-C_4H_9$ und $R = N(CH_2)_4CH_2$) durch Strukturanalyse belegt [17,18].

Die IR-Spektren der Verbindungen IV zeigen aufgrund zufälliger Entartung weniger Banden, als unter der kristallographisch belegten C_s -Symmetrie zu erwarten wären. Charakteristisch ist jeweils eine langwellige Absorption für die μ_2 -Carbonylbrücke im Bereich von 1860 cm⁻¹ (Tab. 5).

Die ¹H-NMR-Spektren belegen jeweils eindeutig die Art der Reste R (Tab. 5). Für das Methylderivat IVa wird eine Resonanz bei 3.6 ppm beobachtet, deren starke Tieffeldverschiebung vermutlich ähnlich wie die Tieffeldverschiebung der ³¹P-NMR-Resonanzen (s.u.) als Folge paramagnetischer Beiträge des trimetallischen Bindungssystems zu erklären ist. Als Besonderheit fällt hier auch eine durch Phosphorentkopplung belegte grosse ²J(PH)-Kopplung auf (14 Hz), die deutlich grösser ist als für solche Kopplungen üblicherweise gefunden wird [11]. Während die Kopplungskonstante unabhängig von der Art des verwendeten Lösungsmittels ist, hängt die chemische Verschiebung selbst stark vom Lösungsmittel ab (Tab. 5). Ähnliche Beobachtungen wurden an strukturell verwandten Triangolo-Trieisenclustern gemacht [19].

Die ³¹P-NMR-Resonanzsignale liegen in dem für dreikernige Eisencluster charakteristischen Tieffeldbereich (Tab. 5).

Im Massenspektrum zeigen alle Verbindungen IV einen Peak für das Molekülion M^+ (Tab. 6). Ebenso sind jeweils alle Fragmente zu beobachten, die durch sukzes-

Ion	$R = CH_3 (IV)$	/a)	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5 (\mathbf{I} \mathbf{V}_5)$	(p)	$\mathbf{R} = \mathbf{i} - \mathbf{C}_3 \mathbf{H}_7 ($	IVc)	$R = n-C_4H_9$	(IVd)	$\mathbf{R} = t - \mathbf{C}_4 \mathbf{H}_9 \left(\right)$	[Ve)
	m/e		m/e	I,	m/e	<i>I</i> _r	m/e	<i>I</i> _r	m/e	<u></u>
<i>M</i> ⁺	494	59	508	14	522	15	536	33	536	11
M ⁺ -CO	466	28	480	12	494	00	508	6	508	10
$M^{+} - 2CO$	438	15	452	6	466	4	480	Ŷ	480	6
$M^{+} - 3CO$	410	18	424	6	438	6	452	S	452	10
$M^{+} - 4CO$	382	52	396	27	410	34	424	66	424	42
$M^+ - 5CO$	354	100	368	43	382	39	396	47	396	42
$M^+ - 6CO$	326	66	340	43	354	35	368	39	368	45
$M^+ - 7CO$	298	63	312	41	326	29	340	24	340	38
$M^+ - 8CO$	270	55	284	31	298	17	312	15	312	19
$M^{+} - 9CO$	242	52	256	29	270	17	284	16	284	19
$M^{+} - 10CO$	214	<u>98</u>	228	45	242	24	256	4 0	256	35
Fe ₃ P ⁺	199	86	199	100	199	100	199	78	199	100
Fe ₂ P ⁺	143	37	143	25	143	49	143	19	143	28
FeP ⁺			87	œ	87	7	87	4		
PR ⁺	4	31	60	5			88	4		
R+					43	79				
Fe ⁺	56	51	56	14	56	26	56	100	56	22

MASSENSPEKTREN DER VERBINDUNGEN Fe₃(CO)₁₀(μ_3 -PR) (IV)

TABELLE 6

lon	$\mathbf{R} = c \cdot C_6 H_{11}$	(IVI)	$R = C_6 H_5$	(IVg) ^a	$R = 4 \cdot CH_3($	C6H₄ (IVh) ¹	° R = 4-B	rC ₆ H ₄ (IVi) ^c	R = 2,4,6-	$(CH_3)_3C_6H_2(IVj)^d$
	m/e	<i>I</i> r	m/e	I _r	m/e	I_r	m/e	I_r	m/e	Ir
M ⁺	562	23	556	20	586	37	634	14	598	7
$M^+ - CO$	534	10	528	16	558	20	909	13	570	10
$M^{+} - 2CO$	506	9	500	10	530	13	578	11	542	S
$M^{+} - 3CO$	478	21	472	21	502	24	550	24	514	80
$M^{+} - 4CO$	450	99	44	27	474	59	522	46	486	10
$M^{+} - 5CO$	422	38	416	52	446	53	494	35	458	47
$M^+ - 6CO$	394	35	388	6 6	418	100	466	45	430	29
$M^+ - 7CO$	366	20	360	39	390	45	438	4	402	40
$M^+ - 8CO$	338	15	332	32	362	50	410	8	374	30
$M^{+} - 900$	310	21	304	57	334	82	382	62	346	46
$M^{+} - 10CO$	282	57	276	100	306	89	354	61	318	100
Fe,P ⁺	199	87	199	20	199	58	199	29	199	36
Fe, P ⁺	143	21	143	12	143	10	143	42	143	14
PR^+	114	13					186	57		
R⁺	83	55	17	11	107	93			119	18
Fe ⁺	- 95	100	56	15	56	21	56	52	56	39
^a Fe ₂ PC ₆ H ₅ ⁺ 220(Fe ₃ PC ₆ H ₄ ⁺ 275(38	62), FePC ₆ H ₅ ⁺ (). ^d Fe ₂ P(CH ₃) ₃	164(15). ^b] 3C ₆ H ₂ ⁺ 262(Fe ₃ PC ₆ H ₄ O ⁺ 31).	291(7), Fe ₃ PC ₆	,H ₄ ⁺ 275(70),	Fe ₃ PCH ₃ ⁺	214(87), Fe	PC ₆ H ₄ O ⁺ 17	9(10). [°] Fe ₂ PC	₆ H ₄ Br ⁺ 298 (100),

37

And in case of the local division of the loc

sive Abspaltung von zehn CO-Gruppen gebildet werden. Das charakteristische Fragment Fe_3PR^+ zerfällt unter Abspaltung von R zu Fe_3P^+ und weiter über stufenweise Abspaltung von Fe zu FeP^+ . Daneben werden auch Fragmentierungswege beschritten, die RP^+ als charakteristisches Fragment ergeben. Für $R = t-C_4H_9$ (IVe) wird zusätzlich eine Fragmentserie beobachtet, die von Fe_3PR^+ unter Abspaltung von Isobuten zu Fe_3PH^+ und dessen Fragmenten führt. Bei $R = 4-CH_3OC_6H_4$ (IVh) wird unter Abspaltung von CH_2O das Fragment $Fe_3PC_6H_5^+$ gebildet; daneben beobachtet man Fe_3PH^+ . Der weitere Zerfall dieser Fragmente erfolgt wie oben.

Die Bildung von IV aus II ist unter folgender Hypothese verständlich: $Fe_2(CO)_9$ wirkt zunächst gegenüber II als Enthalogenierungsmittel. Bei der Abspaltung der zwei Chloratome entsteht aus II das Intermediat C.

Dieses ungesättigte Teilchen lagert nun eine aus $Fe_2(CO)_9$ freigesetzte $(CO)_4$ Fe-Gruppe (s.o.) unter Bildung von IV an. Für die Existenz des Intermediats C sprechen folgende Gründe:

Nach den von Wade angegebenen Regeln [24] und in der Terminologie von Hoffmann [21] ist ein Fe(CO)₃-Fragment isolobal zu einer R-B-Gruppe d.h. beiden, R-B und (CO)₃Fe, fehlen bis zur jeweiligen Edelgaskonfiguration vier Elektronen. In den drei obersten, für die Bindungsfähigkeit der Fragmente verantwortlichen Orbitalen, sind jeweils zwei Elektronen vorhanden. Weiter ist das Symmetrieverhalten dieser drei Orbitale für beide Fragmente gleich. Innerhalb dieser Terminologie ist dann das Fragment C als ein cyclisch konjugiertes 2π -System aufzufassen, das zu einem hypothetischen RN \rightarrow B(R) \rightarrow BR-Aromaten isolobal ist. Diese Überlegungen machen wahrscheinlich, dass C als relativ stabiles, aromatisch stabilisiertes Singulett-Teilchen als Intermediat existieren kann. Wenn auch solche Überlegungen in der Clusterchemie wenig üblich sind [21], so gibt es doch Beispiele für den heuristischen Erfolg eines solchen Konzepts [20].

Als experimentelles Indiz für das Auftreten der Zwischenstufe C kann man die glatte Bildung von IV aus II werten. Noch überzeugender ist aber das Entstehen von V als Nebenprodukt bei der Synthese von IV aus II. V kann als Dimerisierungsprodukt von C aufgefasst werden. Wenn diese Vorstellung tragfähig sein soll, so sollte V aus II auch durch andere Enthalogenierungsreagenzien als $Fe_2(CO)_9$ gebildet werden:

Tatsächlich gelingt die Umwandlung von IIc in Vc mit Zn als Enthalogenierungsagens in guten Ausbeuten. Die postulierte Zwischenstufe C wird durch diese Beobachtung noch wahrscheinlicher.

Die Dimerisierung von zwei dreigliedrigen 2π -Systemen zu einem Oktaeder kann zwar nicht über HOMO-LUMO-Wechselwirkung als ein Synchron-Prozess erfolgen [21], dennoch ist diese Reaktion nicht verboten, weil sich viele Geometrien ausdenken lassen, in denen die Wechselwirkung der beiden Dreiringe zunächst nur über jeweils zwei Zentren in jedem Ring verläuft. Die Bildung des geschlossenen Clusters kann sich dann in einer Folgereaktion anschliessen. Das Endprodukt einer solchen Reaktion stabilisiert sich weiter unter Decarbonylierung zu V.

Verbindungen vom Typ V sind sowohl für Ruthenium [22] wie auch für Eisen [3,23] als Übergangselement gut untersucht. Da diesen Verbindungen innerhalb der 18-Elektronenzählregel jeweils zwei Elektronen fehlen, werden sie häufig mit einer Fe-Fe-Doppelbindung formuliert. Diese Formulierung deckt sich auch mit dem röntgenographischen Befund [23], der drei längere neben einer kürzeren Fe-Fe-Bindung nachweist. Während die Edelgasregel als ein auf der Vorstellung lokalisierter 2-Elektronenbindung beruhendes Konzept Cluster vom Typ V als ungesättigt erscheinen lässt, ist V innerhalb des Wade'schen Konzepts [24], das ein vollständig delokalisiertes Bindungssystem zugrunde legt, in einem Energieminimum. Man zählt für V 14 Elektronen, die innerhalb dieses Konzepts für die Bindungen im Cluster zur Verfügung stehen ($4Fe(CO)_2$: 0; 3CO: 6; 2RP: 8).

14 Elektronen sind gerade für den Aufbau eines closo-oktaedrischen Gerüstes notwendig. Die besondere Stabilität von V wird damit verständlich, während die ungesättigten Eigenschaften [3,23], die V ebenfalls aufweist, aus der lokalisierten Beschreibungsweise der Bindungsverhältnisse (s.o.) heraus verständlich sind.

Als Nebenprodukte entstehen bei der Synthese von IV aus I die Verbindungen VI und VII.

VII ist häufig stabiles Endprodukt bei der Zersetzung phosphorverbrückter Eisencluster [25] und entsteht z.B. auch bei der Thermolyse von IVg zu $Fe_3(CO)_9(\mu_3-PPh)_2$. Verbindungen vom Typ VII sind daher schon länger bekannt [5], ihre Darstellung gelingt auf vielen verschiedenen Wegen. Ihre Reaktivität, vor allem im Hinblick auf die Bildung von V aus VII, wurde eingehend untersucht [3].

Das Nebenprodukt VI entsteht auch bei der Reaktion I \rightarrow II. Da seine Lösungseigenschaften denen von II ähnlich sind, lässt es sich hierbei nur sehr schwer von II in reiner Form abtrennen. Die Isolierung von VI wird zudem dadurch erschwert, dass die meisten Vertreter bei 20°C als Öle anfallen. In kristalliner Form lässt sich nur VIb isolieren. Als analytisch reines Isomerengemisch kann VIa in Form eines gelben Öles erhalten werden. Die schlechte Kristallisationsfähigkeit von VI ist darauf zurückzuführen, dass für VI bei einer gewinkelten bicyclobutanartigen Struktur des Fe₂P₂-Gerüstes VI in drei isomeren Formen vorkommen kann. Für VIb belegt das ³¹P-NMR-Spektrum mit zwei Dubletts (exp. Teil) das ausschliessliche Vorliegen des Isomeren, bei dem die axialen Positionen alternativ von R bzw. Cl besetzt sind. Bei VIa beobachtet man neben den zwei Dubletts für das *syn/anti*-Isomer zusätzlich ein Singulett, das einem derjenigen Isomeren entsprechen muss, bei denen entweder beide axialen Positionen durch Cl oder R besetzt sind. Welchem dieser beiden Isomeren das ³¹P-NMR-Resonanz-Signal zugeordnet werden kann, kann auf der Basis der vorliegenden Daten nicht entschieden werden. Die Verbindungen VI sind ein Spezialfall der breiten Verbindungsklasse Fe₂(CO)₆(μ_2 -L)₂, die auch für L = (R)₂P bereits intensiv untersucht wurden [3,4,6].

Ein bequemerer, wenngleich weniger systematischer Zugang zu den Clustern IV besteht in der Umsetzung von Dinatrium-tetracarbonylferrat-(II) oder Dinatrium-octacarbonyldiferrat-(I) mit $(R)P(Cl)_2$.

IVj wird hierbei in Ausbeuten von 35% in einer Stufe erhalten. Für die Aufarbeitung genügt die Extraktion von IV mit n-Pentan nach vorheriger Filtration über Kieselgel.

Die hier beschriebenen Ergebnisse zeigen, dass die genaue Beobachtung der Stöchiometrie den schrittweisen systematischen Aufbau oligometallischer Systeme auch in solchen Fällen zulässt, wo das Reaktionsgeschehen—vorwiegend infolge angekoppelter Redoxreaktionen—zunächst sehr unübersichtlich erscheint. Der unmittelbare präparative Nutzen der Arbeit liegt in der nun gezielt möglichen Darstellung von IV, das als Edukt für das Studium der Clusterreaktivität sehr wertvoll ist [20].

Experimenteller Teil

Alle Arbeiten wurden unter N_2 als Schutzgas in getrockneten und frisch destillierten Lösungsmitteln durchgeführt. Das zur Chromatographie verwendete Kieselgel (Woelm-Pharma, Korngrösse 0.063–0.200 mm) wurde am Hochvakuum von Sauerstoff befreit und unter N_2 aufbewahrt. Die zu den Synthesen verwendeten Dichlorphosphan-Verbindungen sind entweder im Handel erhältlich oder wurden nach den in 1.c. 11 zitierten Literaturmethoden hergestellt.

IR-Spektren: Zeiss, IMR 40 CaF₂-Küvetten; ³¹P-FT-NMR-Spektren: Bruker WP 80-FT, 32.38 MHz, in Toluol bei 278 K, Standard: P(OMe)₃ mit δ (P(OMe)₃) 139 ppm rel. 85% H₃PO₄; ¹H-NMR-Spektren: Bruker WP 80-FT, 80 MHz, Standard:

(A) Darstellung der Verbindungen I und III

3.64 g (10 mmol) $Fe_2(CO)_9$ werden in 200 ml Toluol mit der aus Tab. 8 ersichtlichen Menge an Dichlorphosphan 1–3 h bei 90°C gerührt. Dabei tritt ein Farbwechsel nach hellrot und dann nach gelb-orange ein. Anschliessend wird das Lösungsmittel am Hochvakuum (10^{-2} mbar) entfernt, der orangefarbene Rückstand in 30 ml CH_2Cl_2 aufgenommen, auf 8 g Kieselgel aufgezogen und bei $-25^{\circ}C$ chromatographiert (Säulendimension: 15×2.5 cm). Mit n-Pentan erhält man eine langgestreckte gelbe bis orangefarbene Zone, aus der nach Abziehen des Lösungsmittels und ggf. Umkristallisation (Ig, Ih) aus n-Pentan bei $-30^{\circ}C$ die Verbindungen I in Form gelber Öle (Ia–If und Ii) bzw. gelber Kristalle (Ig, Ih) anfallen. Ausbeuten, Schmelzpunkte, Molmassen und Analysendaten der Verbindungen I sind in Tab. 8 zusammengestellt.

Im Fall der Dichlorphosphane $(CH_3)P(Cl)_2$ und $(C_2H_5)P(Cl)_2$ erhält man mit Toluol/ $CH_2Cl_2 = 1/2$ zusätzlich eine weitere orangefarbene Zone, aus der nach Abziehen des Lösungsmittels und Umkristalisation aus CH_2Cl_2/n -Pentan bei $-30^{\circ}C$ die Verbindungen IIIa (400 mg, 11% bez. auf eingesetztes $(CH_3)P(Cl)_2$) und IIIb (250 mg, 7% bez. auf eingesetztes $(C_2H_5)P(Cl)_2$) in Form orangefarbener Kristalle erhalten werden. Zersetzungspunkte, Molmassen und Analysendaten der Komplexe III sind unter (C) beschrieben.

(B) Darstellung der Verbindungen II

1 g (CO)₄Fe-P(R)(Cl)₂ (I), (R = C_2H_5 (Ib): 3.34 mmol, R = i- C_3H_7 (Ic): 3.20 mmol, R = t- C_4H_9 (Ie): 3.06 mmol, R = C_6H_5 (Ig): 2.88 mmol, R = 4-CH₃OC₆H₄ (Ih): 2.65 mmol, R = 4-BrC₆H₄ (Ii): 2.35 mmol) werden mit je 2.5 Moläquivalenten Fe₂(CO)₉ bei 45°C in 200 ml Toluol zur Reaktion gebracht. Hierbei tritt zunächst heftige CO-Entwicklung ein und die Farbe der Lösung wechselt von gelb nach rot. Nach beendeter Reaktionszeit (vgl. Tab. 9) wird das Lösungsmittel am Hochvakuum

TABELLE 7

BENENNUNG DER VERBINDUNGEN I-VII

III Bis(μ_2 -chloralkylphosphido)-bis[(dicarbonyl)-(chlor)(dichloralkylphosphan)eisen]

IV (μ_3 -Alkyl- bzw. Aryl-phosphandiyl)-[(μ_2 -carbonyl)tris(tricarbonyleisen)](3Fe - Fe)

V Cyclo-[μ_2 -carbonyl-bis(dicarbonyleisen)]-bis(μ_4 -alkyl- bzw. aryl-phosphandiyl)-bis(tricarbonyleisen) (4Fe - Fe)

VI Bis(μ_2 -chloralkylphosphido)-bis(tricarbonyleisen)(Fe-Fe)

VII Bis(μ_3 -alkyl- bzw. aryl-phosphandiyl)-tris(tricarbonyleisen)(2Fe - Fe)

I (Dichloraryl- bzw. Dichloralkyl-phosphan)tetracarbonyleisen

II (μ_2 -Chlor)(μ_2 -Chloraryl- bzw. chloralkyl-phosphido)bis(tricarbonyleisen)(Fe - Fe)

		Ligand	Reaktions-	Ausbeute ^a	Schmp.	Summenformel	Analysen (1	Gef. (ber.) (%))
(cu)4re-r(k)(ci)2		(R)P(Cl) ₂ g (mmol)	zeit (min)	g (%)	(°C)	(Molmasse)	U	Н
$R = CH_3$	(la)	2.34 (20)	8	1.8 (32)		C ₅ H ₃ Cl ₂ FeO ₄ P	19.00	0.99
						(284.80)	(21.09)	(1.06)
$R = C_2 H_5$	(Ib)	2.62 (20)	120	2.1 (35)		C ₆ H ₅ Cl ₂ FeO ₄ P	23.57	1.51
						(298.83)	(24.12)	(1.69)
$R = i - C_3 H_7$	(lc)	2.90 (20)	180	2.8 (45)		C ₇ H ₇ Cl ₂ FeO ₄ P	27.12	2.16
						(312.86)	(26.87)	(2.26)
$R = n-C_4H_9$	(Id)	3.18 (20)	120	3.1 (47)		C ₈ H ₉ Cl ₂ FeO ₄ P	28.90	2.78
						(326.89)	(29.39)	(2.78)
$\mathbf{R} = t - C_4 H_9$	(Ie)	3.18 (20)	60	3.0 (46)		C ₈ H ₉ Cl ₂ FeO ₄ P	30.00	2.60
						(326.89)	(29.39)	(2.78)
$R = c - C_{\delta} H_{11}$	(II)	3.7 (20)	120	3.3 (47)		C ₁₀ H ₁₁ Cl ₂ FeO ₄ P	34.54	3.25
						(352.94)	(34.03)	(3.14)
$\mathbf{R} = C_6 \mathbf{H}_5$	(Ig)	3.58 (20)	120	3.0 (43)	37	C ₁₀ H ₅ Cl ₂ FeO ₄ P	34.66	1.35
						(346.88)	(34.63)	(1.45)
$R = 4-CH_3OC_6H_4$	(II)	4.18 (20)	180	2.8 (37)	39	C ₁₁ H ₇ Cl ₂ FeO ₅ P	35.12	1.82
						(376.90)	(35.06)	(1.87)
$R = 4 \cdot BrC_6 H_4$	(II)	5.16 (20)	120	3.3 (39)		C ₁₀ H4BrCl ₂ FeO4P	28.39	0.74
						(425.78)	(28.21)	(0.95)

^a Die Ausbeuten beziehen sich auf eingesetztes (R)P(Cl)₂.

TABELLE 8 DARSTELLUNG DER VERBINDUNGEN I

TABELLE 9

DARSTELLUNG DER VERBINDUNGEN II

Verbindung		Reaktions-	Ausbeute ^a	Schmp.	Summenformel	Analyse	(Gef. (b	er.) (%))
$Fe_2(CO)_6 P(R)(Cl)_2$!	zeit (min)	mg (%)	(°C)	(Molmasse)	C	Н	Р
$\overline{\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5}$	(IIa)	40	660 (48)		$C_8H_5Cl_2Fe_2O_6P$ (410.70)	23.73 (23.40)	1.46 (1.23)	
$\mathbf{R} = \mathbf{i} \cdot \mathbf{C}_3 \mathbf{H}_7$	(IIb)	60	480 (35)		$C_9H_7Cl_2Fe_2O_6P$ (424.73)	26.00 (25.54)	1.68 (1.66)	
$\mathbf{R} = \mathbf{t} - \mathbf{C}_4 \mathbf{H}_9$	(IIc)	60	550 (41)		$C_{10}H_9Cl_2Fe_2O_6P$ (438.75)	27.27 (27.38)	2.32 (2.07)	
$\mathbf{R} = \mathbf{C}_6 \mathbf{H}_5$	(IId)	25	520 (39)	75	$C_{12}H_5Cl_2Fe_2O_6P$ (458.74)	31.44 (31.42)	0.84 (1.10)	
$R = 4-CH_3OC_6H_4$	(IIe)	60	720 (56)	88	$C_{13}H_7Cl_2Fe_2O_7P$ (488.77)	32.38 (31.95)	1.44 (1.44)	
$R = 4-BrC_6H_4$	(IIf)	30	540 (43)	71	$C_{12}H_4BrCl_2Fe_2O_6P$ (537.64)	26.46 (26.81)	0.64 (0.75)	5.51 (5.72)

"Die Ausbeuten beziehen sich auf eingesetztes I.

entfernt, der Rückstand in 20 ml CH_2Cl_2 aufgenommen, auf 5 g Kieselgel aufgezogen und bei $-25^{\circ}C$ chromatographiert (Säulendimension: 50×2.5 cm). Mit n-Pentan als Laufmittel erhält man zunächst eine langgestreckte dunkelorangefarbene Zone, in der man nach Abziehen des Lösungsmittels IR- und ³¹P-NMR spektroskopisch die zwei Verbindungen I und II (neben wenig VI) nachweisen kann. Für $R = C_6H_5$, $4-CH_3OC_6H_4$ und $4-BrC_6H_4$ erfolgt die weitere Reinigung durch fraktionierte Kristallisation aus n-Pentan bei $-30^{\circ}C$. Die Verbindungen IId–IIf fallen dabei als jeweils erste Fraktion an.

Die Reinigung der Produktgemische mit $R = C_2H_5$, i- C_3H_7 und t- C_4H_9 macht eine erneute Chromatographie (Säulendimension: 50 × 2.5 cm, -25°C) notwendig. Mit n-Pentan eluiert man zuerst die Verbindung I als gelbe Zone. Direkt nachfolgend eluiert man IIa-IIc als orangefarbene Zone. (Vor- und Nachlauf werden verworfen!) Ausbeuten, Schmelzpunkte, Molmassen und Analysendaten der Verbindungen II sind in Tab. 9 zusammengestellt.

Bei der Umsetzung von Ig und Ii eluiert man mit steigender Polarität des Laufmittels (n-Pentan/Toluol = 5/1-1/1) zusätzlich eine braune Zone. Sie enthält die dreikernigen Cluster der Zusammensetzung Fe₃(CO)₁₀(μ_3 -PR) (IV) die nach zu (D) analoger Aufarbeitung in kristalliner Form anfallen. Die Ausbeuten betragen für IVg 450 mg (28% bez. auf eingesetztes (C₆H₅)P(Cl)₂) und für IVi 70 mg (5% bez. auf eingesetztes (4-BrC₆H₄)P(Cl)₂). Schmelz- bzw. Zersetzungspunkte, Molmassen und Analysendaten sind der Tab. 10 zu entnehmen.

(C) Darstellung der Verbindungen III

1 g (2.43 mmol) IIa in 100 ml Toluol wird mit 1.27 g (9.69 mmol) $(C_2H_5)P(Cl)_2$ 1.5 h bei 90°C gerührt. Dabei färbt sich die ursprünglich rote Lösung langsam orange; gleichzeitig entstehen kleine Mengen eines farblosen Niederschlags. Nach Entfernen des Lösungsmittels am Hochvakuum wird der orangefarbene Rückstand über eine mit Kieselgel beladene Säule (20 × 2.5 cm) bei - 20°C chromatographiert. Mit n-Pentan eluiert man einen gelben Vorlauf, der nach Entfernen des Lösungsmittels und mehrmaligem Gefriertrocknen 130 mg (11% bez. auf eingesetztes IIa) VIa ergibt. Mit Toluol/CH₂Cl₂ = 1/2 eluiert man eine langgestreckte orangefarbene Zone, aus der nach Entfernen des Lösungsmittels und Umkristallisation aus CH₂Cl₂/n-Pentan bei -30° C 900 mg (50% bez. auf eingesetztes IIa) analysenreines IIIb erhalten wird.

IIIa: Zers.P. 166°C. Gef.: C, 14.01; H, 1.71; Fe, 16.43. $C_8H_{12}Cl_8Fe_2O_4P_4$ (691.40) ber.: C, 13.90; H, 1.75; Fe, 16.15%.

IIIb: Zers.P. 148°C. Gef.: C, 19.22; H, 2.88; Fe, 14.32. $C_{12}H_{20}Cl_8Fe_2O_4P_4$ (747.50) ber.: C, 19.28; H, 2.70; Fe, 14.94%.

VIa: Gef.: C, 26.0; H, 2.24. C₁₀H₁₀Cl₂Fe₂O₆P₂ (470.74) ber.: C, 25.52; H, 2.14%.

IR (n-Pentan): 2070w, 2057vw, 2037vs, 2019w, 2009m, 2001w, 1994s. ³¹P-NMR (in Toluol, 273 K): 273.7(S), 269.1 (D, *J*(PP) 122.1 Hz), 281.5 (D, *J*(PP) 122.1 Hz). ¹H-NMR (CDCl₃): 1.24–1.70 (M, 6H); 2.5–2.78 (M, 4H).

MS: M^+ 470(4), M^+ - CO 442(4), M^+ - 2CO 414(6), M^+ - 3CO 386(11), M^+ - 4CO 358(6), M^+ - 5CO 330(45), M^+ - 6CO 302(77), Fe₂P₂(C₂H₅)(Cl)₂⁺ 273(31), Fe₂P₂Cl₂⁺ 244(16), Fe₂P₂Cl⁺ 209(39), Fe₂P₂⁺ 174(31), Fe₂P⁺ 143(54), FeP₂⁺ 118(100), PC₂H₅⁺ 60(23), Fe⁺ 56(66).

(D) Darstellung der Verbindungen IV (II, V, VIb und VII), ausgehend von I

Je 1 g (CO)₄Fe-P(R)(Cl)₂ (R = CH₃: 3.51, C₂H₅: 3.35, i-C₃H₇: 3.20, n-C₄H₉: 3.06, t-C₄H₉: 3.06, c-C₆H₁₁: 2.83, C₆H₅: 2.88, 4-CH₃OC₆H₄: 2.65, 4-BrC₆H₄: 2.35 mmol) werden mit 7.11 Moläquivalenten Fe₂(CO)₉ in 200 ml Toluol 1-3 h bei 45-60°C (vgl. Tab. 10) gerührt, wobei die Farbe der Lösung zuerst nach rot und dann nach braun bis braun/oliv wechselt. Zu Beginn der Reaktion tritt heftige CO-Entwicklung ein. Nach beendeter Reaktionszeit wird das Lösungsmittel am Hochvakuum entfernt, der schwarze Rückstand in 30 ml CH₂Cl₂ aufgenommen, mit 10 g Kieselgel versetzt und nach Trocknung bei 10⁻² mbar über eine mit Kieselgel gefüllte Säule (50×2.5 cm, n-Pentan) bei -25° C chromatographiert. Mit n-Pentan als Eluierungsmittel erhält man eine langgestreckte orangerote Zone, die in der Regel (lt. IR- und ³¹P-NMR-Spektren) ein Gemisch von zwei bis drei Produkten enthält. Erneute Chromatographie (Säulendimension 50×2.5 cm, n-Pentan) bei -20° C ergibt zwei Zonen: Als erste wird eine orangefarbene Zone eluiert, aus der man nach Entfernen des Lösungsmittels II und/oder VI isolieren kann. Die zweite, dunkelorange gefärbte Zone enthält die Cluster VII, die nach Abziehen des Lösungsmittels und Umkristallisation aus n-Pentan bei -30° C analysenrein anfallen. Bei der Umsetzung von Ih mit Fe₂(CO)₉ wird der Cluster VIIf erst mit n-Pentan/Toluol = 1/1 als hellrote Zone eluiert. Die weitere Aufarbeitung erfolgt wie zuvor beschrieben. (Anmerkung: Eine Rechromatographie entfällt, wenn eine der Verbindungen II oder VII als kristalliner Festkörper anfällt. In diesem Falle genügt eine fraktionierte Kristallisation aus n-Pentan bei -30° C).

Ausbeuten, Schmelz- oder Zersetzungspunkte, Molmassen und Analysendaten der Komplexe VII sind der Tab. 13 zu entnehmen. Die spektroskopischen Daten der Verbindungen VII sind in den Tab. 11 und 12 zusammengestellt.

Mit steigender Polarität des Eluierungsmittels (n-Pentan/Toluol 8/1-1/1, vgl. Tab. 10) erhält man eine zweite langgestreckte braun bis braun/oliv gefärbte Zone. Nach Abziehen des Lösungsmittels und Umkristallisation aus n-Pentan bei -30° C fallen die Cluster IV in Form schwarzer, metallisch glänzender Kristalle an. Ausbeuten, Schmelz-, Zersetzungs- bzw. Sublimationspunkte, Molmassen und

Analysendaten der Verbindungen IV sind in Tab. 10 zusammengestellt.

Bei der Umsetzung von Ig und Ii mit $Fe_2(CO)_9$ erhält man mit dem Laufmittelgemisch Toluol-Toluol/ CH_2Cl_2 1/1 eine weitere, wenngleich kleine rote Zone. Nach analoger Aufarbeitung isoliert man aus ihr den Vierkerncluster Va bzw. Vb. II: Ausbeuten IIa 100(7), IIb 150(11), IIc 250(19), IId 120(9), IIf 70(6) mg. Die Ausbeuten beziehen sich auf eingesetztes I. Die weiteren analytischen Daten sind in Tab. 9 zusammengestellt.

V: Va [3,23]. Gef.: C, 40.42; H, 1.65; Fe, 28.66; P, 7.38. $C_{23}H_{10}Fe_4O_{11}P_2$ (747.67) ber.: C, 40.13; H, 1.72; Fe, 28.16; P, 7.81%. (Die Verbindung Va enthält 1/2 Molekül Toluol). Schmp.: > 210°C (Zers.). IR (CH₂Cl₂): 2072vw, 2025vs, 2008m, 1982w, 1811vw. ³¹P-NMR (in CH₂Cl₂, 273 K): 241.9(S). ¹H-NMR (in Aceton-d₆): 7.25 (M,5H), 7.75 (M,5H). MS: M^+ -Fe(CO)₂ 636(2), M^+ -Fe(CO)₂ - CO 608(11), M^+ -Fe(CO)₂ - 2CO 580(5), M^+ -Fe(CO)₂ - 3CO 552(2), M^+ -Fe(CO)₂ - 4CO 524(8), M^+ -Fe(CO)₂ - 5CO 496(10), M^+ -Fe(CO)₂ - 6CO 468(14), M^+ -Fe(CO)₂ - 7CO 440(11), M^+ -Fe(CO)₂ - 8CO 412(4), M^+ -Fe(CO)₂ - 9CO 384(44), Fe₂P₂(C₆H₅)₂⁺ 328(3), Fe₃P₂(C₆H₅)⁺ 307(23), Fe₃P₂⁺ 230(2), Fe₂P₂⁺ 174(8), (C₆H₅)₂⁺ 154(100), P(C₆H₅)⁺ 108(7), C₆H₅⁺ 77(82), Fe⁺ 56(16).

Vb: Gef.: C, 30.60; H, 0.77. $C_{23}H_8Br_2Fe_4O_{11}P_2$ (905.47) ber.: C, 30.48; H, 0.89%. Schmp.: > 182°C (Zers.). IR (CH₂Cl₂): 2073vw, 2027vs, 2011m, 1985w, 1816vw. ³¹P-NMR (in CH₂Cl, 273 K): 236.4(S). ¹H-NMR (in Aceton-*d*₆): 7.3–8.0 (M,8H). MS: *M*⁺ - Fe(CO)₂ 794(17), *M*⁺ - Fe(CO)₂ - CO 766(69), *M*⁺ - Fe(CO)₂ - 2CO 738(53), *M*⁺ - Fe(CO)₂ - 3CO 710(18), *M*⁺ - Fe(CO)₂ - 4CO 682(30), *M*⁺ - Fe(CO)₂ - 5CO 654(29), *M*⁺ - Fe(CO)₂ - 6CO 626(58), *M*⁺ - Fe(CO)₂ - 7CO 598(31), *M*⁺ - Fe(CO)₂ - 8CO 570(39), *M*⁺ - Fe(CO)₂ - 9CO 542(97), Fe₂P₂(BrC₆H₄)₂⁺ 486(23), Fe₃P₂(C₆H₄)₂Br⁺ 462(12), Fe₂P₂(C₆H₄)₂Br⁺ 406(6), Fe₃P₂(C₆H₅)₂⁺ 384(24), FePBr₃⁺ 327(79), PBr₃⁺ 271(59), FePC₆H₄⁺ 163(64), PC₆H₄⁺ 107(22), Fe⁺ 56(100).

VIb: Gef.: C, 28.56; H, 3.03. $C_{12}H_{14}Cl_2Fe_2O_6P_2$ (498.79) ber.: C, 28.90; H, 2.83%. Schmp.: 132°C. IR (n-Pentan): 2069w, 2036vs, 2007m, 1998vw, 1991s. ³¹P-NMR (in Toluol, 273 K): 289.4(D, *J*(PP) 113.4 Hz), 303.7 (D, *J*(PP) 113.4 Hz). ¹H-NMR (CDCl₃): 1.35–1.69 (M, 12H), 2.2–2.9 (M, 2H). MS: *M*⁺ 498(11), *M*⁺ – CO 470(1), *M*⁺ – 2CO 442(4), *M*⁺ – 3CO 414(15), *M*⁺ – 4CO 386(7), *M*⁺ – 5CO 358 (44), *M*⁺ – 6CO 330(59), Fe₂P₂(C₃H₇)Cl₂⁺ 287(30), Fe₂P₂Cl₂⁺ 244(31), Fe₂P₂Cl⁺ 209(36), Fe₂P₂⁺ 174(20), FeP₂⁺ 118(100), P(C₃H₇)⁺ 74(42), Fe⁺ 56(38), C₃H₇⁺ 43(36).

(E) Darstellung der Verbindungen IV, ausgehend von II

Je 1 g $Fe_2(CO)_6P(R)(Cl)_2$, II ($R = C_2H_5$: 2.43, $R = t-C_4H_9$: 2.28, $R = C_6H_5$: 2.18, $R = 4-CH_3OC_6H_4$: 2.05 und $R = 4 - BrC_6H_4$: 1.86 mmol) wird mit 2.5 Moläquivalenten $Fe_2(CO)_9$ in 150 ml Toluol 35 min bei 50°C gerührt, wobei die Farbe der Reaktionslösung von rot nach braun wechselt. Nach Aufarbeitung analog zu (D) eluiert man mit n-Pentan unumgesetztes Edukt II. Mit steigender Polarität des Eluierungsmittels (n-Pentan/Toluol 5/1-1/1) erhält man die Cluster IV, die nach Umkristallisation aus n-Pentan bei -30°C analysenrein anfallen.

Ausbeuten: IVb 550(45), IVe 430(35), IVg 900(74), IVh 480(40), IVi 770(67), mg. Die Ausbeuten beziehen sich auf eingesetztes II. Die weiteren analytischen Daten sind in Tab. 10 zusammengestellt.

TABELLE 10

DARSTELLUNG DER VERBINDUNGEN IV

Verbindung		Reaktions-	Reaktions-	Ausbeute ^a	Schmp.	Summenformel	Analyse ((Gef. (ber.) (5	((9	
Fe ₃ (CO) ₁₀ (µ ₃ -P)	R)	zeit (min)	temp. (°C)	mg (%)	())	(Molmasse)	C	H	Fe	ď
$R = CH_3$	(IVa)	8	55	600 (35)	≥ 202 ^b	C ₁₁ H ₃ Fe ₃ O ₁₀ P	26.38	0.43	34.07	6.26
						(493.66)	(26.76)	(0.61)	(33.94)	(6.27)
$R = C_2 H_5$	(IVb)	120	45	1000 (59)	≥ 204 ^b	$C_{12}H_5Fe_3O_{10}P$	28.45	0.70	33.25	6.12
1						(507.68)	(28.39)	(0.99)	(33.00)	(6.10)
$\mathbf{R} = \mathbf{i} \cdot \mathbf{C}_3 \mathbf{H}_7$	(IVc)	99	55	550 (33)	≥ 210 ^b	$C_{13}H_7Fe_3O_{10}P$	29.76	1.17	31.92	5.96
						(521.71)	(29.93)	(1.35)	(32.11)	(5.94)
$\mathbf{R} = \mathbf{n} \cdot \mathbf{C}_{\mathbf{A}} \mathbf{H}_{\mathbf{S}}$	(PAI)	8	50	1000 (61)	33	C ₁₄ H ₉ Fe ₃ O ₁₀ P	30.95	1.66	31.87	6.00
						(535.74)	(31.39)	(1.69)	(31.27)	(5.78)
$\mathbf{R} = \mathbf{t} - \mathbf{C}_4 \mathbf{H}_9$	(IVe)	8	50	800 (49)	≥ 200 ^b	C ₁₄ H ₉ Fe ₃ O ₁₀ P	31.55	1.50	30.81	6.32
						(535.74)	(31.39)	(1.69)	(31.27)	(5.78)
$\mathbf{R} = \mathbf{c} \cdot \mathbf{C}_{6} \mathbf{H}_{11}$	(IVI)	60	55	850 (53)	58	$C_{16}H_{11}Fe_3O_{10}P$	33.89	1.56	30.58	5.19
						(561.77)	(34.21)	(1.97)	(29.82)	(5.51)
$\mathbf{R} = \mathbf{C}_{s}\mathbf{H}_{s}$	(IVg)	120	45	1150 (72)	87	$C_{16}H_5Fe_3O_{10}P$	35.05	06.0	30.02	5.30
						(555.78)	(34.58)	(0.91)	(30.15)	(5.57)
R = 4-CH ₃ OC ₆ F	I₄(IVh)	8	55	500 (32)	88	$C_{17}H_7Fe_3O_{11}P$	34.81	1.07	29.21	5.14
						(585.75)	(34.86)	(1.20)	(28.60)	(5.29)
$\mathbf{R} = 4 \cdot BrC_{6}H_{4}$	(IVI)	120	55	800 (54)	≽128	C ₁₆ H ₄ BrFe ₃ O ₁₀ P	29.84	0.48		
						(634.63)	(30.28)	(0.64)		

TABELLE 11

SPEKTROSKOPISCHE DATEN DER VERBINDUNGEN VII

Verbindung		IR ª	³¹ P-NMR ^b	¹ H-NMR ^c
Fe ₃ (CO) ₉ (μ ₃ -PR) ₂		$(\nu(CO)$ -Streckschwingungen; cm ⁻¹)	ô(ppm)	g(ppm)
R = CH ₃ [3]	(VIIa)	2041vs, 2021vs, 2002s, 1992w, 1984vw	318.8	2.49 (Pseudotriplett, 6H, J(PH) 7.7) d
R = i-C ₃ H ₇	(VIII)	2038vs, 2018vs, 1997s, 1989w, 1979vw,	371.7	1.49 (M, 12H) 2.8–3.5 (M, 2H) ^d
$R = n - C_4 H_9 [26]$	(VIIc)	2038vs, 2019vs, 1999s 1987w, 1979vw	338.5	1.05 (M, 6H); 1.5 (M, 8H); 2.85 (M, 4H) ^d
$\mathbf{R} = t \cdot \mathbf{C}_4 \mathbf{H}_9 [3]$	(VIId)	2035vs, 2016vs, 1994s, 1986w, 1979vw	406.5	1.59 (Pseudotriplett, 18H, J(PH) 8.6) ^d
R = c-C ₆ H ₁₁	(VIIe)	2036vs, 2017vs, 1996s, 1987w, 1979vw	337.0	1.2–2.3 (M, 20H); 2.66–3.1 (M, 2H) ^d
R = 4-CH ₃ 0C ₆ H ₄	(JIIV)	2041vs, 2020vs, 2005s, 1991w, 1981vw	320.9	3.94 (S, 6H); 7.2 (M, 4H); 7.8 (M, 4H) °
$R = C_6 H_5 [3, 25]$	(VIIg)	2043vs, 2022s, 2007s, 1994w, 1982vw	320.0	7.1–7.4 (M, 10H)*

^a n-Pentan; vs = sehr stark, s = stark, w = schwach, vw = schwach. ^b δ , 298 K, rel. 85% H₃ PO₄ mit δ (P(OMe)₃) 139 ppm in Toluol. ^c δ , TMS (ext.); S = Singulett, M = Multiplett, DD = Duplett von Duplett. J in Hz. ^d CDCl₃. ^e Aceton-d₆.

Ion	$R = CH_3$	_	R = i-C	₃ H ₇	R = n-(Q₄H₀	R = t-C	4H9	R = c-C	⁶ H ₁₁	R = 4-C	H ₃ OC ₆ H₄	$\mathbf{R} = C_{\delta}$	1, I,
	(VIIa) [3]		(VIIb)		(VIIc)	26]](pIIV)	3]	(VIIe)		(VIII) a		(VIIg) ^b	[3,25]
	m/e	I,	m/e	$I_{\rm r}$	m/e	Ir	m/e	Ir	m/e	Ir	m/e	Ir	m/e	Ir
<i>M</i> ⁺	512	15	568	6	596	6	596	1	648	8	969	5	636	22
M ⁺ -CO	484	52	540	28	568	9	568	4	620	42	668	7	608	51
$M^{+} - 2CO$	456	24	512	15	540	4	540	5	592	43	640	37	580	15
$M^{+} - 3CO$	428	15	484	28	512	œ	512	10	564	4	612	6	552	20
$M^{+} - 4CO$	4 00	38	456	27	484	10	484	20	536	41	584	21	524	31
$M^+ - 5CO$	372	100	428	25	456	6	456	16	508	46	556	21	496	37
$M^{+} - 6CO$	3 <u>4</u> 8	63	4 00	11	428	5	428	5	480	19	528	35	468	40
$M^+ - 7CO$	316	30	372	9	400	ę	400 1	٢	452	9	500	29	440	24
$M^{+} - 8CO$	288	35	344	ę	372	S	372	36	424	4	472	7	412	11
$M^{+} - 9CO$	260	76	316	6	344	18	344	25	396	27	4	100	384	100
Fe ₃ P ₂ R ⁺	245	43	273	36	287	28	287	12	313	10			307	36
Fe ₂ P ₂ R ₂ ⁺	204	7			288	21	288	55	340	7			328	9
$Fe_2P_2R^+$	189	21	217	80	231	54	231	41	257	4	281	10	251	6
Fe ₃ P ₂ ⁺	230	52	230	100	230	100	230	100	230	100	230	11	230	20
$Fe_2P_2^+$	174	20	174	6	174	11	174	33	174	19	174	9	174	œ
Fe_3P^+	199	37	199	8	199	17	199	7	199	16	199	20	199	8
Fe_2P^+	143	32	143	ŝ	143	16	143	Q	143	4			143	9
FeP ⁺	87	31	87	7	87	œ	87	80						
Fe ⁺	56	33	56	6	56	35	56	16	56	16	56	3	56	22
PR ⁺			74	4	88	10			114	œ	138	5	108	20

 ${}^{a} \operatorname{Fe}_{3} \operatorname{P}_{2} \operatorname{G}_{6} \operatorname{H}_{4}^{+} 306(9), \operatorname{Fe}_{2} \operatorname{P}_{2} \operatorname{G}_{6} \operatorname{H}_{4}^{+} 250(7), \operatorname{Fe}_{2} \operatorname{PC}_{6} \operatorname{H}_{5}^{+} 220(48), \operatorname{PC}_{6} \operatorname{H}_{5}^{+} 108(24), \operatorname{b} \operatorname{Fe}_{3} \operatorname{PC}_{6} \operatorname{H}_{4}^{+} 276(52), \operatorname{Fe}_{2} \operatorname{PC}_{6} \operatorname{H}_{5}^{+} 220(27).$

48

TABELLE 12

TABELLE 13

DARSTELLUNG DER VERBINDUNGEN VII

Verbindung Fe ₃ (CO) ₉ (μ_3 -PR) ₂		Ausbeute ^a mg(%)	Zersetzungs- punkte (°C)	Summenformel (Molmasse)	Analyse (Gef. (ber.) (%))	
					C	Н
$\mathbf{R} = \mathbf{CH}_{3}[3]$	(VIIa)	300 (33)	> 100 °	$C_{11}H_6Fe_3O_9P_2$ (511.65)	25.75 (25.82)	1.04 (1.18)
$\mathbf{R} = \mathbf{i} \cdot \mathbf{C}_3 \mathbf{H}_7$	(VIIb)	50 (6)	> 80	$C_{15}H_{14}Fe_{3}O_{9}P_{2}$ (567.76)	31. 44 (31.73)	2.43 (2.49)
$\mathbf{R} = \mathbf{n} - \mathbf{C}_4 \mathbf{H}_9 \left[26 \right]$	(VIIc)	250 (28)	45	$C_{17}H_{18}Fe_{3}O_{9}P_{2}$ (595.82)	33.94 (34.27)	2.99 (3.05)
$\mathbf{R} = \mathbf{t} - \mathbf{C_4} \mathbf{H_9} [3]$	(VIId)	150 (16)	> 80	$C_{17}H_{18}Fe_{3}O_{9}P_{2}$ (595.82)	34.19 (34.27)	2.91 (3.05)
$\mathbf{R} = \mathbf{c} \cdot \mathbf{C}_6 \mathbf{H}_{11}$	(VIIe)	170 (19)	151	$C_{21}H_{22}Fe_{3}O_{9}P_{2}$ (647.89)	38.95 (38.93)	3.34 (3.42)
$\mathbf{R} = 4\text{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	(VIIf)	350 (38)	148	$C_{23}H_{14}Fe_{3}O_{11}P_{2}$ (695.85)	39.74 (39.70)	1.99 (2.02)
$R = C_6 H_5^{b} [5,25]$	(VIIg)	25 (44)	134	$C_{21}H_{10}Fe_{3}O_{9}P_{2}$ (635.80)	39.88 (39.67)	1.52 (1.59)

^a Die Ausbeuten beziehen sich auf eingesetztes I. ^b VIIg wurde durch fünfstündige Thermolyse von 100 mg (0.18 mmol), IVg in 50 ml Toluol bei 110°C erhalten. ^c > 120°C (Schwarzfärbung).

(F) Darstellung der Verbindung IVj

2 g (5.2 mmol) Na₂Fe₂(CO)₈ in 100 ml THF werden bei 0°C zu 0.91 ml (1.16 g, 5.2 mmol) (2,4,6-(CH₃)₃C₆H₂) P(Cl)₂ in 50 ml THF getropft. Nach Aufwärmen auf 25°C rührt man 6 h bei dieser Temperatur weiter, wobei die grüne Farbe der Reaktionslösung nach braun wechselt. Anschliessend entfernt man das Lösungsmittel am Hochvakuum, nimmt den Rückstand in 100 ml n-Pentan auf und filtriert über 10 cm Kieselgel. Nach Entfernen des Lösungsmittels und Umkristallisation aus n-Pentan bei -30° C erhält man die Verbindung IVj in Form schwarzer, metallisch glänzender Kristalle. Ausbeute: 1 g (32%).

Die entsprechende Umsetzung von 1.1 g (5.2 mmol) $Na_2Fe(CO)_4$ mit einem Moläquivalent (2,4,6-(CH₃)₃C₆H₂)P(Cl)₂ ergibt nach zweistündiger Reaktionszeit und analoger Aufarbeitung (s.o.) 400 mg (13%) IVj. Die bei der Umsetzung von $Na_2Fe_2(CO)_8$ mit (2,4,6-(CH₃)₃C₆H₂) P(Cl)₂ beobachtete Grünfärbung der Reaktionslösung tritt hier nicht auf. Die Ausbeuten beziehen sich auf eingesetztes (2,4,6-(CH₃)₃C₆H₂) P(Cl)₂.

Gef.: C, 38.78; H, 1.54; Fe, 27.99; P, 4.94. $C_{19}H_{11}Fe_3O_{10}P$ (597.81) ber.: C, 38.17; H, 1.85; Fe, 28.03; P, 5.18%. Schmp.: 132°C. Die spektroskopischen Daten der Verbindung IVj sind den Tabellen 5 und 6 zu entnehmen.

(G) Darstellung der Verbindung Vc

Zu 1 g (2.28 mmol) IIc in 150 ml THF wird 1.5 g (23 mmol) Zn-Pulver hinzugegeben. Diese heterogene Reaktionsmischung wird 6 h bei 25°C gerührt, wobei die rote Farbe langsam nach braunrot wechselt. Anschliessend filtriert man über 5 cm Kieselgel vom überschüssigen Zn-Pulver ab, entfernt das Lösungsmittel bei 10^{-2} mbar und chromatographiert den Rückstand bei -25°C (Säulendimension 15×2.5 cm, n-Pentan). Mit n-Pentan eluiert man nicht umgesetztes IIc. Mit Toluol/CH₂Cl₂ = 1/1 wird Vc als braunrotfarbene Zone isoliert. Umkristallisation aus Toluol/n-Pentan bei -30° C ergibt 400 mg (50% bez. auf eingesetztes IIc) Vc in Form schwarzer, metallisch glänzender Kristalle

Gef.: C, 32.30; H, 2.15. $C_{19}H_{18}Fe_4O_{11}P_2$ (707.68) ber.: C, 32.25; H, 2.56%. Schmp.: > 100°C (Zers.). IR (CH₂Cl₂): 2066vw, 2018vs, 1998m, 1973w, 1812vw. ³¹P-NMR (CH₂Cl₂, 273 K): 322.5(S). ¹H-NMR (CDCl₃): 0.7 (D, 18H, *J*(PH) 20.0 Hz). MS: $M^+ - Fe(CO)_2 596(10)$, $M^+ - Fe(CO)_2 - CO 568(31)$, $M^+ - Fe(CO)_2 - 2CO 540(12)$, $M^+ - Fe(CO)_2 - 3CO 512(17)$, $M^+ - Fe(CO)_2 - 4CO 484(32)$, $M^+ - Fe(CO)_2 - 5CO 456(17)$, $M^+ - Fe(CO)_2 - 6CO 428(7)$, $M^+ - Fe(CO)_2 - 7CO 400(20)$, $M^+ - Fe(CO)_2 - 8CO 372(38)$, $M^+ - Fe(CO)_2 - 9CO 344(45)$, $Fe_3P_2C_4H_9^+$ 287(96), $Fe_3P_2^+$ 230(100), Fe_3P^+ 199(11), $Fe_2P_2^+$ 174(32), Fe_2P^+ 143(4), Fe⁺ 56(58); parallel hierzu wird noch eine Fragmentserie beobachtet, die von $M^+ - CO$ ausgeht und über die sukzessive Abspaltung aller CO-Gruppen ($M^+ - nCO$, n = 1,2,3...11) zu $Fe_3P_2(C_4H_9)_2^+$ führt. Die Intensitäten sind jedoch gering.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und dem Fonds der Chemischen Industrie, Frankfurt/M, für die Unterstützung dieser Arbeit. Herrn Doz. Dr. Berke danken wir für die anregenden Diskussionen. Den Herren Dipl. Chem. K. Knoll und E. Pilz sind wir für die Aufnahme von Massenspektren, den Damen M. Glas und M. Bader für die Durchführung von Elementaranalysen dankbar.

Literatur

- 1 G. Huttner, G. Mohr, A. Frank und U. Schubert, J. Organomet. Chem., 118 (1976) C73.
- 2 R. Lal De, J. v. Seyerl und G. Huttner, J. Organomet. Chem., 178 (1979) 319.
- 3 (a) H. Vahrenkamp, E.J. Wucherer und D. Wolters, Chem. Ber., 116 (1983) 1219; (b) M. Müller und
 H. Vahrenkamp, Chem. Ber., 116 (1983) 2311.
- 4 R. Lal De, J. v. Seyerl und G. Huttner, J. Organomet. Chem., 243 (1983) 331; 250 (1983) 647; 250 (1983) 718.
- 5 P.M. Treichel, W.K. Dean und W.M. Douglas, Inorg. Chem., 11 (1972) 1609.
- 6 R. Bartsch, S. Hietkamp, S. Morton und O. Stelzer, J. Organomet. Chem., 222 (1981) 263.
- 7 K. Natarajan, O. Scheidsteger und G. Huttner, J. Organomet. Chem., 221 (1981) 301.
- 8 (a) G. Huttner, J. Schneider, H.-D. Müller, G. Mohr, J. v. Seyerl und L. Wohlfahrt, Angew. Chem., 91 (1979) 82; Angew. Chem., Int. Ed. Engl., 18 (1979) 76; (b) J. Schneider und G. Huttner, Chem. Ber., 116 (1983) 917.
- 9 F. Iwasaki, M.J. Mays, P.R. Raithby, P.L. Tayler und P.J. Wheatley, J. Organomet. Chem., 213 (1981) 185.
- 10 F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 3438.
- 11 H. Lang, G. Mohr, O. Scheidsteger und G. Huttner, Chem. Ber., im Druck.
- 12 (a) A.R. Rossi und R. Hoffmann, Inorg. Chem., 14 (1975) 365; (b) M. Elian und R. Hoffmann, Inorg. Chem., 14 (1975) 1058.
- (a) B.T. Kilbourn, U.A. Reaburn und D.T. Thompson, J. Chem. Soc., (A) (1969) 1906; (b) J. Pickardt,
 L. Rösch und H. Schumann, J. Organomet. Chem., 107 (1976) 241.
- 14 B.M. Gimarc, Molecular Structure and Bonding, Academic Press, 1979.
- 15 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD51007, der Autoren und des Zeitschriftenzitats angefordert werden.
- 16 (a) H. Vahrenkamp, J. Organomet. Chem., 63 (1973) 399; (b) P.M. Treichel, W.K. Dean und J.C. Calabrese, Inorg. Chem., 12 (1973) 2908.

- 17 G. Huttner und K. Knoll, unveröffentlicht.
- 18 B. Pritzlaff, Dissertation (Universität Konstanz) in Vorbereitung.
- 19 A. Winter, L. Zsolnai und G. Huttner, Chem. Ber., 115 (1982) 1286.
- 20 (a) K. Knoll, O. Orama und G. Huttner, Angew. Chem., im Druck; (b) K. Knoll, G. Huttner, M. Wasiucionek und L. Zsolnai, Angew. Chem., 96 (1984) 708.
- 21 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem. Int. Ed. Engl., 21 (1982) 711 und zit. Lit..
- 22 J.S. Field, R.J. Haines, D.N. Smit, K. Natarajan, O. Scheidsteger und G. Huttner, J. Organomet. Chem., 240 (1982) C23.
- 23 H. Vahrenkamp und D. Wolters, Organometallics, 1 (1982) 874.
- 24 (a) K. Wade, Chem. Commun., (1971) 792; (b) K. Wade, Adv. Inorg. Chem. Radiochem., 18 (1976) 1.
- 25 (a) G. Mohr, Dissertation Technische Universität München, 1978; (b) J. Schneider, Dissertation Universität Konstanz, 1982.
- 26 J.-P. Lampin und F. Mathey, C.R. Acad. Sc. Paris, t. 282 (1976) Serie C, 979.